Search results for "electron emission"

showing 10 items of 36 documents

Photoelectron Emission from Metal Surfaces Induced by Radiation Emitted by a 14 GHz Electron Cyclotron Resonance Ion Source

2015

Photoelectron emission measurements have been performed using a room-temperature 14 GHz ECR ion source. It is shown that the photoelectron emission from Al, Cu, and stainless steel (SAE 304) surfaces, which are common plasma chamber materials, is predominantly caused by radiation emitted from plasma with energies between 8 eV and 1 keV. Characteristic X-ray emission and bremsstrahlung from plasma have a negligible contribution to the photoelectron emission. It is estimated from the measured data that the maximum conceivable photoelectron flux from plasma chamber walls is on the order of 10% of the estimated total electron losses from the plasma. peerReviewed

010302 applied physicsMaterials scienceta114Physics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaCyclotron resonanceBremsstrahlungFOS: Physical sciencesPlasmaElectronphotoelectron emissionRadiation01 natural sciences7. Clean energyElectron cyclotron resonanceIon sourcePhysics - Plasma Physics010305 fluids & plasmasPlasma Physics (physics.plasm-ph)Physics::Plasma Physics0103 physical scienceselectron cyclotron resonance ion sourcesPlasma diagnosticsAtomic physicsInstrumentation
researchProduct

ZnO/ZnS heterostructures for hydrogen production by photoelectrochemical water splitting

2016

This work studies the photoelectrochemical behavior of novel ZnO/ZnS heterostructures obtained by means of anodization in water and glycerol/water/NH4F electrolytes with different Na2S additions under controlled hydrodynamic conditions. For this purpose different techniques such as Field Emission Scanning Electronic Microscopy (FE-SEM) with EDX, Raman spectroscopy and photoelectrochemical water splitting tests under standard AM 1.5 conditions have been carried out. The obtained results showed that the hydrodynamic conditions promoted an ordered nanotubular morphology which facilitates electron-hole separation and consequently, the photoelectrochemical activity for water splitting is enhance…

Materials scienceGeneral Chemical EngineeringInorganic chemistry02 engineering and technologyElectrolyte010402 general chemistry01 natural sciencesINGENIERIA QUIMICAsymbols.namesakeZINCRAMAN-SPECTROSCOPYANODIZATIONTIO2 NANOTUBESHydrogen productionAnodizingELECTROLYTESPHOTOCATALYTIC ACTIVITYHeterojunctionGeneral Chemistry021001 nanoscience & nanotechnologyHYDRODYNAMIC CONDITIONSEVOLUTION0104 chemical sciencesARRAYSElectroquímicaField electron emissionsymbolsWater splitting0210 nano-technologyRaman spectroscopySENSITIZED ZNODark current
researchProduct

Structural transformations in amorphous selenium as studied by the differential thermal analysis and exoelectron emission technique

2007

The parameters (temperature, activation energy) of the surface and volume glass transition (retrification process) in amorphous selenium produced by rapid quenching of the liquid phase have been determined using the EEE and DTA techniques. EEE is a surface effect connected with structural transformations in the surface layer whereas the DTA measurements give the information about the transformations occurring in the volume of the sample. It has been found that the surface retrification of selenium occurs with activation energy smaller than the volume retrification, both observed in the first heating run. The value of activation energy for the volume retrification measured in the second DTA …

QuenchingHistoryMaterials scienceAnalytical chemistrychemistry.chemical_elementActivation energyComputer Science ApplicationsEducationVolume (thermodynamics)chemistryDifferential thermal analysisSurface layerGlass transitionSeleniumExoelectron emissionJournal of Physics: Conference Series
researchProduct

Electron Emission of Pt: Experimental Study and Comparison With Models in the Multipactor Energy Range

2016

Experimental data of secondary emission yield (SEY) and electron emission spectra of Pt under electron irradiation for normal incidence and primary energies lower than 1 keV are presented. Several relevant magnitudes, as total SEY, elastic backscattering probability, secondary emission spectrum, and backscattering coefficient, are given for different primary energies. These magnitudes are compared with theoretical or semiempirical formulas commonly used in the related literature.

Secondary electron emissionBackscatterAstrophysics::High Energy Astrophysical PhenomenaCleaningElectronSecondary emission yield (SEY01 natural sciencesElectrostatic measurements010305 fluids & plasmasBackscattering coefficientBackscatterEnergy measurementElectron emission0103 physical sciencesElectron beam effectsTEORIA DE LA SEÑAL Y COMUNICACIONESElectron beam processingEmission spectrumElectrical and Electronic EngineeringElastic backscattering probabilityElectron emission spectraMultipactor energy rangePlatinum010302 applied physicsRange (particle radiation)ChemistrySecondary emission yield (SEY)Secondary emission spectrum (SES)PtElectron irradiationCurrent measurementElectronic Optical and Magnetic MaterialsElectron backscatteringSecondary emission yieldSecondary emissionYield (chemistry)Backscattered electronsDistortion measurementAtomic physicsEnergy (signal processing)Multipactor
researchProduct

Study of the Secondary Electron Yield in Dielectrics Using Equivalent Circuital Models

2018

[EN] Secondary electron emission has an important role on the triggering of the multipactor effect; therefore, its study and characterization are essential in radio-frequency waveguide applications. In this paper, we propose a theoretical model, based on equivalent circuit models, to properly understand charging and discharging processes that occur in dielectric samples under electron irradiation for secondary electron emission characterization. Experimental results obtained for Pt, Si, GaS, and Teflon samples are presented to verify the accuracy of the proposed model. Good agreement between theory and experiments has been found.

010302 applied physicsMultipactor effectNuclear and High Energy PhysicsWaveguide (electromagnetism)Materials scienceDielectricCondensed Matter Physics01 natural sciencesSecondary electrons010305 fluids & plasmasCharacterization (materials science)Computational physicsSecondary electron emission (SEE)Secondary emission0103 physical sciencesRadio frequencyTEORIA DE LA SEÑAL Y COMUNICACIONESElectron beam processingEquivalent circuitMultipactor effectSecondary electron yield
researchProduct

Electron beam induced optical and electronical properties of SiO 2

2000

Abstract Ionizing radiation in dielectric and optically transparent silica as well as thin SiO 2 layers produces defect luminescence as well as charge storage. A comparison of different excitation–relaxation processes like cathodoluminescence, charge injection and trapping, secondary electron field emission, and exoelectron emission leads to a generally similar excitation dose behaviour described by an electron beam saturation dose of 0.01–0.1 C/cm 2 . This suggests a correlation of these four electron excitation mechanisms likely related to the same kind of defect in glassy SiO 2 , the 2-fold-coordinated silicon Si: centre with typical electronic singlet–singlet and singlet–triplet transit…

Materials scienceSiliconMechanical Engineeringchemistry.chemical_elementCathodoluminescenceCondensed Matter PhysicsSecondary electronsField electron emissionchemistryMechanics of MaterialsElectron excitationSecondary emissionGeneral Materials ScienceAtomic physicsLuminescenceExoelectron emissionMaterials Science and Engineering: B
researchProduct

Carbon nanotube bags: catalytic formation, physical properties, two-dimensional alignment and geometric structuring of densely filled carbon tubes.

2001

The catalytic CVD synthesis, using propyne as carbon precursor and Fe(NO3)3 as catalyst precursor inside porous alumina, gives carbon nanotube (CNT) bags in a well-arranged two-dimensional order. The tubes have the morphology of bags or fibers, since they are completely filled with smaller helicoidal CNTs. This morphology has so far not been reported for CNTs. Owing to the dense filling of the outer mother CNTs with small helicoidal CNTs, the resulting CNT fibers appear to be stiff and show no sign of inflation, as sometimes observed with hollow CNTs. The fiber morphology was observed by raster electron microscopy (REM), transmission electron microscopy (TEM), and atomic force microscopy (A…

NanotubeNanostructureChemistryOrganic ChemistryChemiechemistry.chemical_elementNanotechnologyGeneral ChemistryCarbon nanotubeCatalysislaw.inventionsymbols.namesakeField electron emissionChemical engineeringTransmission electron microscopylawsymbolsCarbon nanotube supported catalystRaman spectroscopyCarbonChemistry (Weinheim an der Bergstrasse, Germany)
researchProduct

The positioning system of the ANTARES Neutrino Telescope

2012

The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning sys…

Positioning systemDetector control systems (detector and experiment monitoring and slow-control systems architecture hardware algorithms databases)Detector modelling and simulations II (electric fieldsDetector alignment and calibration methods (lasers sources particle-beams)01 natural sciencesTiming detectorshardwareDetector alignment and calibration methods010303 astronomy & astrophysicsInstrumentationDETECTOR ALIGMENTMathematical PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSOUND[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]Orientation (computer vision)[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]DetectorAstrophysics::Instrumentation and Methods for AstrophysicsTriangulation (computer vision)particle-beams)GeodesyDETECTOR CONTROL SYSTEMDetector modelling and simulations II (electric fields charge transport multiplication and induction pulse formation electron emission etc)Física nuclearNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomenadatabases)sources[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pulse formationarchitecture[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2DETECTOR MODELLING AND SIMULATIONSDetector modelling and simulations IIalgorithmsPhysics::Geophysics0103 physical sciences14. Life underwaterInstrumentation and Methods for Astrophysics (astro-ph.IM)Cherenkov radiationetc)multiplication and inductionBuoyDetector control systems010308 nuclear & particles physicsDetector control systems (detector and experiment monitoring and slow-control systemsMooringcharge transport[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Detector alignment and calibration methods (laserselectron emissionFISICA APLICADAdetector modelling and simulations ii (electric fields; antares neutrino telescope; multiplication and induction; charge transport; pulse formation; electron emission; etc); hardware; architecture; timing detectors; detector control systems (detector and experiment monitoring and slow-control systems; algorithms; databases); sources; detector alignment; calibration.; acoustic positioning; detector alignment and calibration methods (lasers; particle-beams)
researchProduct

Highly-parallelized simulation of a pixelated LArTPC on a GPU

2023

The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The alg…

multiplication and inductionpulse formationscintillationtutkimuslaitteethiukkasfysiikkaelectric fieldsnoble liquid detectorscharge transportdetector modelling and simulations IIsimulation methods and programsMonte Carlo -menetelmätilmaisimetelectron emissiondouble-phaseprosessointiionizationalgoritmittime projection chamberssimulointiTPC
researchProduct

Cathodoluminescence characterization of ZnO/ZnS nanostructures anodized under hydrodynamic conditions

2018

[EN] ZnO/ZnS nanostructures were successfully synthesized by a simple electrochemical anodization of zinc in a glycerol based electrolyte containing sulfide-ammonium fluoride. The influence of different hydrodynamic conditions and anodization potentials during anodization on the morphological and electronic properties of the obtained ZnO/ZnS nanostructures was studied. The anodized samples were characterized using confocal Raman microscopy, X-Ray Diffraction (XRD), Field Emission Scanning Electronic Microscopy (FE-SEM), cathodoluminescence (CL), and photoelectrochemical water splitting tests under standard AM 1.5 conditions. The results showed that hydrodynamic conditions and higher potenti…

Materials scienceCathodoluminescenceGeneral Chemical EngineeringCathodoluminescenceZnO/ZnS nanostructure02 engineering and technology010402 general chemistry01 natural sciencesINGENIERIA QUIMICAsymbols.namesakeMicroscopyElectrochemistryWater splittingPhotocurrentNanoestructuresAnodizingPhotocatalyst021001 nanoscience & nanotechnology0104 chemical sciencesElectroquímicaField electron emissionChemical engineeringsymbolsPhotocatalysisWater splittingAnodization0210 nano-technologyRaman spectroscopy
researchProduct